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Real-Time Demand Response Model
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Abstract—This paper describes an optimization model to adjust
the hourly load level of a given consumer in response to hourly elec-
tricity prices. The objective of the model is to maximize the utility
of the consumer subject to a minimum daily energy-consumption
level, maximum and minimum hourly load levels, and ramping
limits on such load levels. Price uncertainty is modeled through ro-
bust optimization techniques. The model materializes into a simple
linear programming algorithm that can be easily integrated in the
Energy Management System of a household or a small business.
A simple bidirectional communication device between the power
supplier and the consumer enables the implementation of the pro-
posed model. Numerical simulations illustrating the interest of the
proposed model are provided.

Index Terms—Bidirectional communication, demand response,
hourly prices, optimization, smart grids.

NOMENCLATURE

The main notation used throughout the paper is stated below
for quick reference. Other symbols are defined as required
throughout the text.

Consumer demand at the beginning of hour .

Minimum daily consumption required by the
consumer.

Energy consumption in hour .

Up/down demand ramping limit.

Consumer utility in hour .

Energy price in hour .

A superscript affecting any of the symbols
above indicates actual/minimum/maximum value.

I. INTRODUCTION

A. Motivation and Technique

T HE STILL VAGUE concept of smart grids refers to
those electricity networks equipped with the technology

required to facilitate the fluent interaction of all users connected
to it [1]. Among other things, smart grid technology enables
bidirectional communication between a power supplier and
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different types of consumers. Such bidirectional communi-
cation may be used by a conscious consumer to optimize its
energy consumption profile so that its utility is maximized (or
its electricity cost minimized).

The contractual arrangement between the consumer and the
supplier allows the consumer to receive hourly price infor-
mation several minutes prior to the corresponding hour and
responds to this information by adjusting its consumption for
that hour. Such hourly energy adjustment is made within a
daily planning framework so that a minimum daily energy
consumption is guaranteed. Other consumption constraints,
such as hourly load and load-variation limits, are also enforced.

Specifically, we consider a daily 24-h horizon spanning the
hours prior to the current one, the current hour , and the

hours following the current one.
It is important to note that:

1) Prices and decisions (hourly energy consumptions and de-
mand levels) for the initial hours are known.

2) The price for the current hour is known (e.g., 10 min prior
to the current hour) and also the consumer demand at the
beginning of this hour , but not its energy consumption,
which needs to be determined and communicated to the
electricity supplier (e.g., 5 min prior to the current hour).

3) The prices for the following hours are unknown data
whose uncertainty needs to be modeled.

4) The preliminary energy consumption levels for the fol-
lowing are variables to be determined.

Observe that the real-time availability of electricity price in-
formation, thanks to smart grid technology, is what makes the
proposed demand response model useful from a practical point
of view.

The price uncertainty pertaining to the hours following
the current one is considered via robust optimization, because
robust optimization is particularly suited to address uncertain,
but bounded parameters [3], [4]. The hourly price uncertainty is
modeled using a forecast value and a certainty interval around
such forecast value, e.g., . Conventional
forecasting techniques are used to compute such confidence in-
terval [5], [6].

For hourly decision making we consider the planing horizon
described above that allows computing consumption levels by
the consumer for the current hour and the following ones.
However, only the consumption of the current hour is actually
“used” and sent to the energy supplier as the actual consumption
in that hour. In other words, a rolling window model is used on
a hourly basis to derive the optimal consumption for the current
hour to be transmitted to the supplier.

The considered model translates into a simple linear pro-
gramming problem that can be solved in virtually no time
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using current PC computational technology. Moreover, the
corresponding solution algorithm is easily embedded into the
Energy Management System (EMS) of any household or small
business.

The implementation of the decisions obtained using the
proposed model generally results in significant energy cost
savings, which is illustrated in this paper via different case
studies.

B. Literature Review and Contribution

Much has been said and written about the smart grids’
promising capabilities (e.g., demand-side management [7],
[8], vehicle-to-grid systems [9], [10], and enhanced control of
generation [11]) and their associated benefits (e.g., enabling in-
frastructure for integrating large amounts of renewable energy
and installing distributed generation [12]–[14], new energy ser-
vices, and network-usage and energy efficiency improvements
[11], [15], [16]). But the fact is that much more has to be done
in practice so as to turn smart grids into a reality.

Additionally, the technical literature includes a significant
number of references dealing with the problem of a consumer
sufficiently large to participate in the electricity markets to min-
imize its energy procurement costs (see, for instance, [17]–[19]
and the references therein). For the time being, however, small
consumers merely engage in fixed-price contracts with retailers.
The role of a retailer basically consists in purchasing energy
from the electricity markets to resell it to their clients at a price
as competitive as possible, thus assuming the risk associated
with market prices [20], [21].

Yet, with the development of smart grids, the interaction be-
tween a consumer and its power supplier is expected to become
more involved due to the availability of technology enabling new
forms of contractual agreements; and, in turn, with the upgrade
of commercial relationships in the electricity sector, the design
of new decision-making models are to be imperative. One of
these new forms of agreements is the real-time pricing of elec-
tricity (RTP) [22], [23] according to which retail electric prices
change frequently to reflect variations in the cost of the energy
supply.

The contribution of this paper is in line with this RTP scheme
and consists in providing a simple optimization model that al-
lows a consumer to adapt its hourly load level in response to
hourly electricity prices. Two-way communication between the
consumer and the supplier is considered. This algorithm can be
easily embedded into the EMS of a household or a small busi-
ness and make it possible to achieve maximum utility by the
consumer. To the best of our knowledge, no similar real-time
demand response model under uncertainty has been proposed
in the technical literature.

C. Paper Organization

The rest of the paper is organized as follows. Section II de-
scribes the proposed model including an initial model and a ro-
bust one. Section III explains the implementation of the model.
Section IV provides and discusses results from a case study.
Section V closes giving some relevant conclusions.

Fig. 1. Roles of time indexes � and � in the optimization model (1) .

II. DEMAND RESPONSE MODEL

A. Initial Model

The demand response model is formulated below:

Minimize

(1a)

subject to:

(1b)

(1c)

(1d)

(1e)

(1f)

Model (1) is defined for each of the 24 hours of a day.
Note that in each hour , prices and hourly energy consump-
tions for the previous are known, while the energy
consumptions and the load levels

for the current hour and the
following ones are the variables to be determined.

The objective function (1a) to be minimized is the minus
utility of the consumer spanning the current hour and the fol-
lowing hours. The hours prior to the current one
are not considered in the objective function, because the utility
of the consumer spanning that period is a known constant. Note
that the price at hour , , is known, but prices for the following

hours, , are unknown, which
is indicated by the brackets. Constraint (1b) establishes a floor
for the daily consumption. That is, this constraint guarantees
a minimum energy consumption per day. Constraints (1c) re-
late power and energy in each hour using a trapezoidal criterion.
Constraints (1d) and (1e) are ramping down/up limits on hourly
load levels. Constraints (1f) enforce bounds (min and max) on
hourly load levels.

Fig. 1 clarifies graphically the roles of time indexes and
in the optimization problem (1).

B. Robust Model

It should be noted that model (1) is not properly formulated
as prices are unknown quantities. We
consider certainty intervals at the -confidence level for prices,
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, and formulate the
well-defined robust model below [3]:

Minimize

(2a)

subject to:

Constraints (1b)–(1f) (2b)

(2c)

(2d)

(2e)

(2f)

(2g)

The decision variables of robust problem (2) above are

.
Robust problem (2) is obtained using duality properties and

exact linear equivalences. Variables and are dual vari-
ables of the initial problem (1) used to take into account the
known bounds of prices, while is an auxiliary variable used
to obtain equivalent linear expressions. An exhaustive descrip-
tion of how to obtain this robust problem from problem (1) is
given in [3].

is a parameter that controls the level of robustness in the
objective function. This parameter takes real values in the in-
terval , i.e., between zero and the number of unknown
prices. This way, if the influence of the price deviations
in the objective function is ignored, while if , all price
deviations are considered, thus leading to a more conservative
solution.

III. MODEL IMPLEMENTATION

Model (2) is to be implemented on a hourly basis using a
rolling window criterion as follows:

1) The price for hour , is transmitted by the supply com-
pany and received by the consumer prior (e.g., 10 minutes)
to hour .

2) Model (2) is solved to obtain the energy consumption in
hour , , and the demand at the beginning of hour

. These quantities are transmitted to the supply company
prior (e.g., 5 minutes) to hour .

3) The above two steps are repeated for the whole day on a
hourly basis.

Note that the above procedure implies a cooperative agrement
between the supplier and the consumer, as the supplier provides
hourly prices and the consumer hourly consumptions and max-
imum demands.

The historical series of electricity prices up to and including
hour is used to build an ARIMA-based model from which
confidence intervals for the energy prices in the subsequent

hours are estimated. These confidence intervals are, in turn,
used as the uncertainty bounds,

Fig. 2. Flow chart illustrating the rolling process.

, in the robust optimization problem (2). These
bounds are updated in each hourly period as new information
is incorporated into the ARIMA fitting stage. Fig. 2 illustrates a
flow chart of the consumption allocating process.

The values of parameters , and are set beforehand
by the consumer, and they can be reset as required during the
rolling process to reflect changes in the energy consumption pat-
tern or in consumer’s elasticity.

In summary:
1) The considered consumer has a communication system

that allows bidirectional communication with the power
supplier on a hourly basis.

2) It receives each hourly price prior to the corresponding
hour (e.g., 10 min ahead).

3) It has a price forecasting routine that provides price con-
fidence intervals for the remaining hours of the day on
a hourly basis. Alternatively, it receives such information
from the power supplier.

4) It has an optimization routine to solve problem (2) to derive
the optimal hourly consumption and optimal demand level
to be sent to the power supplier prior to the corresponding
hour (e.g., 5 min in advance).

It is important to emphasize that the smart grid technology
provides the consumer with valuable information that the con-
sumer can exploit to increase its utility. Roughly speaking, this
increase can be attributed to the following.

1) The knowledge of the real-time electricity price, which en-
ables the real-time adjustment of the energy consumption
in accordance with the actual cost of electricity.

2) The availability of the price series up to the current point
in time, which allows the consumer to update and improve
its price uncertainty modeling in each hour.

The effects on the consumer utility of these two information
management improvements are separately and jointly analyzed
in the following case study.
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TABLE I
CONSUMER DATA

TABLE II
ENERGY PRICE DATA (�/MWH)

IV. CASE STUDY

A. Data

Data for the considered commercial consumer is provided in
Table I. The consumer demand at the beginning of the market
horizon is 1.5 MW.

For the sake of simplicity the consumer utility is initially as-
sumed to be constant throughout the hours of the day. However,
this is not generally the case.

Price data is given in Table II. The second column provides
the actual prices, while the third and fourth columns include the
lower and upper bounds of prices for each hour, respectively.
These data correspond to the energy prices of the Spanish area
of the electricity market of the Iberian Peninsula on Monday
July 5, 2010 [24]. Price bounds are obtained using the ARIMA
model proposed in [6] with a level of confidence equal to 95%.
Price bounds and actual prices are plotted in Fig. 3.

B. Results and Discussion

This subsection illustrates the working of the proposed
method. For this purpose, problem (2) is solved using the data
provided in the previous subsection.

Fig. 3. Actual prices and price bounds.

In order to show the usefulness of the proposed algorithm,
two alternatives are considered:

1) With smart grid. The problem is solved using the technique
described in Section III.

2) Without smart grid. In this case, the consumer does not re-
ceive hourly price information. The only information avail-
able for the consumer are price bounds for the next day, so
it has to determine its energy consumption profile for the
whole day (with no hourly adjustments). This alternative
boils down to solving problem (2) only for with
being unknown. Thus the objective function of problem (2)
becomes

First of all, the optimal value of the control parameter
should be determined. Note that takes values in the interval

. Table III shows the results for different values of
the control parameter as a percentage of its maximum value

. The second and third columns provide the consumer
utility with and without smart grid, respectively.

The model is solved using CPLEX 11.2.1 [25] under GAMS
[26] on a Linux-based server with four processors clocking at
2.6 GHz and 32 GB of RAM. The optimal solution for each of
the values of is achieved in less than 1 s.

The optimal value of , i.e., the value of that results in
the maximum daily utility for the consumer with smart grid, is
45% of the number of unknown prices, while without smart grid,
values of between 75% and 100% provide the same optimal
daily utility for the consumer.

The use of the smart grid model allows achieving a daily
utility for the consumer that is 15.86% higher than that ob-
tained in the absence of smart grid. This is a consequence of
the bidirectional communication and the hourly adjustments in
the energy consumption, which is adapted to the hourly price
profile.

Fig. 4 shows the energy consumption profile corresponding to
the optimal value of for the two considered alternatives. Note
from Table I that the consumer utility function is linear, which
means that the consumer obtains a positive profit provided that



240 IEEE TRANSACTIONS ON SMART GRID, VOL. 1, NO. 3, DECEMBER 2010

TABLE III
DAILY CONSUMER UTILITY (�) FOR DIFFERENT VALUES OF THE CONTROL

PARAMETER �

Fig. 4. Energy consumption profile for the optimal values of �.

the energy prices are lower than 41.5/MWh. Note also from
Table II that between hours 15 and 24, there are several hours in
which the energy prices are lower than 41.5/MWh. If the smart
grid is used, the consumer gets this information and adapts its
load profile accordingly, while if the smart grid is not available,
the consumer cannot change its load profile (which must be pre-
specified at the beginning of the day). This behavior is illustrated
in Fig. 4.

Finally, we compare both alternatives (with and without smart
grid) for the working days of the second week of July 2010 (i.e.,
from July 5th to 9th). The results obtained from this comparison
are listed in Table IV. The second and third columns include
the daily utility for the consumer with and without smart grid,
respectively. The fourth column provides the utility increment

TABLE IV
RESULTS

Fig. 5. Evolution throughout the day of the price bounds in hour 24.

achieved with the use of the smart grid. Lastly, the fifth and sixth
columns provide the optimal values of as a percentage of the
unknown prices for each day and alternative.

Observe that using the smart grid, we obtain a weekly average
utility that is 13.20% higher than in the case of not using it.

Note also that the optimal value of for each alternative is
different through the week due to its dependence with the energy
prices and the consumer utility. However, this information is
not available (we do not know the actual prices in advance),
so a previous study is required to select the optimal value of
this parameter for each period. Nevertheless, observe that from
Monday to Thursday, the optimal value of with smart grid
is close to 40%. Likewise, without smart grid, and for all the
working days of the week, values of between 85% and 100%
of the total unknown prices provide the same optimal solutions.

The results above have been obtained without updating
the price bounds throughout the day, i.e., in each hour the
price bounds used to solve problem (2) were identical to those
provided in Table II. Nevertheless, as the rolling process pro-
gresses new information about the time series of electricity
prices is collected. Then, this information can be incorporated
into the ARIMA model, thus updating the price bounds for the
remaining hours of the day.

Fig. 5 depicts the evolution of the price bounds in hour 24
throughout the day. Note that the main changes in these bounds
occur in the three hours before hour 24.

The effect of updating price bounds is shown in Table V. The
third and second columns show the daily consumer utility for
the price bounds being updated or not, respectively, while the
fourth column provides the utility increment achieved updating
such bounds.

As shown in Table V, the price bound updating does not al-
ways cause an increase in the utility for the consumer. This is
so because of the following four reasons:
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TABLE V
EFFECT OF UPDATING PRICE BOUNDS THROUGHOUT THE DAY

1) The price bounds are barely affected by the updating
process, except for those immediate hours following the
current one, in which price bounds get a little bit closer.

2) The narrowing of the price confidence interval is more sig-
nificant in the last few hours of the rolling process, while
most of the energy consumption is scheduled for the first
hours.

3) In each step of the rolling process, the solution provided
by the robust model is mainly determined by the highest
upper bounds of the hourly prices following the current
hour. However, as stated before, these upper bounds are
not substantially affected when updated.

4) The inaccuracies associated with the modeling of the elec-
tricity price series may well mask, or even reverse, the
slight improvement achieved by the price bound update.

For all the reasons above, we should conclude in this case that
the real-price availability is significantly much more important
than updating price bounds. However, we emphasize that this
might not be the case, for example, in situations with high con-
sumption during the last hours of the day, for which price bounds
noticeably approach in relative terms.

Next, in order to obtain more realistic results, the problem is
solved using a nonconstant utility for the consumer. Thus, the
consumer hourly utility function is modeled by four blocks of
75 MWh each, with a utility per block of 46, 43, 40, and

37/MWh, respectively.
The remaining data is equal to that provided in Section IV-A.
The problem is solved for the following four cases:

1) Case #1: with smart grid and no price bound updating
throughout the day.

2) Case #2: without smart grid.
3) Case #3: with smart grid and price bound updating.
4) Case #4: with smart grid and forecast prices. In this case,

the initial problem (1), which is non-robust, is solved
using forecast prices in the objective function, but no price
bounds. That is, we solve problem (1) with the following
objective function:

where is the forecast price in hour , which is
obtained using the ARIMA model proposed in [6].

The total consumer utilities for each case and working day
of the second week of July 2010 are provided in Table VI. The
results for the robust models have been obtained using a value

TABLE VI
RESULTS WITH A NONCONSTANT UTILITY FUNCTION

Fig. 6. Energy consumption profile.

of equal to 85% of the unknown prices, which is not the op-
timal value for all the cases. Nevertheless, this information is
not available in advance, and the results with this value of are
very close to the optimal ones.

As shown in Table VI, the use of smart grid technology in-
creases the utility for the consumer. Particulary, the weekly av-
erage utility with smart grid is 4.99% higher than that obtained
without smart grid.

With respect to updating price bounds throughout the day, the
results are very similar to those obtained with no price bound
updating.

Finally, note that the robust model proposed in this paper pro-
vides a better solution than that obtained using simpler tech-
niques, as the one employed in case #4, which uses price fore-
casts to solve the problem. The weekly average utility is 16.22%
higher with the robust model than that obtained with price fore-
casts.

The energy consumption profile on Monday for each case is
depicted in Fig. 6.

V. CONCLUSION

This paper provides a simple LP algorithm to be inte-
grated into the EMS of a household or a small business. Via
bidirectional communication with the electricity supplier, such
algorithm allows maximizing the consumer utility or mini-
mizing its energy cost. The interaction takes place on a hourly
basis using a rolling window algorithm to consider the energy
consumption throughout the twenty four hours of the day. Bidi-
rectional communication is a key component of a smart grid
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and as such, is used to design the proposed procedure. A case
study demonstrates the usefulness of the proposed algorithm
to maximize the utility (or to reduce the electricity bill) of a
consumer that integrates the proposed procedure in its EMS.
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